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Abstract 

Semiconductor transient faults (soft errors) are becoming 
an increasingly critical threat to reliable software execution. 
With the advent of the billion transistor chip era, it is 
impractical to protect the entire hardware. As a result, it is 
crucial that the tradeoffs between reliability and performance 
be made at the architecture design stage. To achieve this goal, 
researchers need a framework to evaluate software 
vulnerability to transient errors at a high level. This paper 
describes Sim-SODA (SOftware Dependability Analysis), a 
unified framework for estimating microprocessor reliability in 
the presence of soft errors at the architectural level. 
Compared with previous studies, Sim-SODA covers more 
hardware structures and provides fine-grained reliability 
analysis. We present a detailed architectural reliability profile 
of an Alpha-21264-like superscalar microprocessor running 
workloads from various application domains. Additionally, we 
obtain program vulnerability phases and correlate them with 
microprocessor performance metrics. 

1. Introduction 
High availability and reliability are essential for any 

computer system. It is well known that program bugs and 
administration time account for the majority of system 
downtime and loss of availability. Recently, semiconductor 
transient faults have become an increasing cause of failures in 
modern computer systems [2, 27, 28]. Transient faults, also 
known as soft errors, are caused by cosmic rays or substrate 
alpha particles that can potentially alter program run-time 
states. As semiconductor processing technology moves toward 
smaller and denser transistors, lower threshold voltages and 
tighter noise margins, soft error rates of current and future 
hardware are projected to increase significantly [15, 21, 23]. 

Methodologies to tolerate the deleterious effect of soft 
errors on program execution at low levels exist. For example, 
radiation-hardening techniques can be used in circuit and logic 
designs to reduce the likelihood of a single event upset due to 
soft errors [7]. In [30], SMT capability is exploited to execute 
a redundant thread to tolerate faults in the main thread. 
Nevertheless, these approaches can cause a significant 
overhead in performance, power, area, and design verification 
if they are used to protect the entire hardware which may 
contain billions of transistors. Architectural techniques to 
increase software reliability under soft errors are becoming 
imperative. To make appropriate performance, cost, and 
reliability trade-offs; designers clearly need infrastructures 

that can estimate microprocessor dependability 1  at a high 
level and at an early design stage. Such tools can be very 
useful in identifying structures with a high vulnerability and 
to apply appropriate fault tolerance mechanisms to minimize 
performance and cost overhead. Using architectural level 
dependability estimation tools, designers can compare the 
reliability of different architectural alternatives. Additionally, 
architectural level simulation tools can help programmers 
explore the design space of reliability-aware software and 
verify that a given program execution meets the dependability 
target on a hardware platform. 

This paper describes Sim-SODA (SOftware Dependability 
Analysis), an architectural level simulator for software 
reliability analysis. Sim-SODA estimates the dependability of 
hardware components in a high-performance, out-of-order 
superscalar microprocessor using the computation methods 
introduced in [4, 22]. Compared with previous studies [4, 19, 
22], Sim-SODA provides fine-grained reliability analysis and 
covers more hardware structures. While previous architectural 
reliability analysis tools were built on proprietary 
performance models [13, 24], Sim-SODA uses an open source, 
publicly available simulator Sim-Alpha [11, 12], which makes 
porting the reliability analysis framework described in this 
paper to other popular simulator tool suites (such as 
Simplescalar[6] and M5 [3]) relatively easy. 
1.1. Prior Work 

There has been prior work on dependability modeling at a 
high level. For example, hardware RTL models have been 
used in the past to estimate processor reliability [25, 27]. The 
RTL models contain all of the detailed information about the 
microprocessors. Nevertheless, the simulation slowdown of 
RTL models is too expensive for architecture studies, in 
which the tradeoffs between many hardware configurations 
need to be considered. Moreover, these models are generally 
not available during the architectural exploration phase of a 
microprocessor design. The Architectural Vulnerability Factor 
(AVF) analysis methods proposed by Mukherjee et al used a 
performance model to generate reliability estimates. In [4, 22] 
the vulnerability of hardware structures (e.g. instruction queue, 
execution unit, TLB and caches) of an Itanium2-like IA64 
processor was studied. In [1], Asadi et al estimated the 
vulnerability of L1 cache through the residency time of 
critical words in the cache. In [19], Li and Adve developed 
SoftArch, an architecture level tool for modeling and 
analyzing soft errors. The SoftArch framework estimates 
reliability using a probabilistic model of the error generation  
                                                           
1 In this paper, we use dependability and reliability 
interchangeably. 



Table 1. A Comparison of Different Architectural Level Reliability Analysis Tools 

Metrics Mukherjee et al[22] 
Biswas et al [4] 

Wang et al 
[27] 

SoftArch 
[19] 

Sim-SODA 
[this paper] 

Methodology AVF Statistic fault injection Probabilistic model of error 
generation and propagation 

AVF, AVF for address-based 
structures and hybrid AVF 
computing 

Hardware 
Structures 
Modeled 

Instruction queue, function 
unit, Data cache and TLB, 
store buffer 

Pipeline and its control states 
Instruction buffer, decode unit, 
register file, functional unit, TLB, 
instruction queue 

Instruction queue, register file, 
function unit, cache, TLB, 
ROB, load/store queue, victim 
buffer 

Baseline Models 
and Availability 

Asim, 
Intel’s proprietary tool for 
modeling Itanium 2-like 
processor 

Verilog model of an Alpha 
processor, available at 
http://www.crhc.uiuc.edu/ACS/tool
s/ivm/download.html  

Turandot, available on request  Sim-Alpha, publicly available

Comment 
Complex hardware such as 
instruction queue is 
modeled as bulk structure 

A subset of Alpha ISA is modeled. 
Caches are not modeled. RTL 
model is not usually available at 
early design stage 

Memory hierarchy is not 
modeled. Complex hardware 
such as instruction queue is 
modeled as bulk structure 

Fine-grained AVF models for 
complex structures. Covers 
more hardware structures 

and propagation process in a processor. As a complementary 
approach to AVF computation, statistic fault injection has 
been used in several studies [5, 10, 25, 27] to evaluate 
architectural reliability. To obtain statistic significance, a large 
number of experiments need to be performed on an 
investigated hardware component. Table 1 summarizes the 
features of several architectural reliability estimation tools 
from the perspectives of methodology, modeled hardware 
structures and the availability of baseline models. 
1.2. Contribution of This Work 

We have developed Sim-SODA, a unified simulation 
framework that models software reliability on microprocessor-
based systems. Compared with prior studies, this work makes 
the following contributions: (1) Sim-SODA covers more 
hardware structures (e.g. reorder buffer and victim buffer) that 
have not been studied before. While the AVF of 
microarchitecture structures, such as instruction queue, cache 
and load/store buffers have been individually studied before, 
Sim-SODA provides a unified infrastructure to study the 
reliability of all major units of a high-performance 
microprocessor with a single run. (2) In Sim-SODA, we 
propose using a fine-grained reliability analysis to improve the 
accuracy of AVF estimation. We also propose a hybrid 
method that can be used to accurately estimate the 
vulnerability of complex structures such as register files. To 
our knowledge, AVF of register files has not been well 
understood in previous publications. (3) Our work 
characterizes run-time hardware vulnerability dynamics and 
its correlation with performance. We show that using a simple 
performance metric is not sufficient in capturing hardware 
vulnerability. This observation has not been made in previous 
studies. (4) Sim-SODA was built on the open source and 
publicly available Sim-Alpha simulator while all other 
architectural reliability simulators were built on proprietary 
frameworks. We show that Sim-SODA will be a very useful 
tool for reliability-aware software/hardware design and 
optimization.  

The rest of this paper is organized as follows. Section 2 
provides a brief introduction of reliability estimation through 
AVF computing. Section 3 describes the design of the Sim-
SODA framework, especially focusing on the new features that 

we added. Section 4 presents experimental setup including 
simulated machine configuration and studied workloads. 
Section 5 provides a detailed, component-based reliability 
profile of an Alpha-21264-like microprocessor running on a 
wide range of applications. Section 6 summarizes the paper 
and outlines our future work.  
2. Architectural Level Software Vulnerability 
Estimation 

Sim-SODA estimates microprocessor reliability using the 
Architectural Vulnerability Factor (AVF) computing methods 
introduced in [4, 22]. In this section, we briefly review the 
concept and the computation of AVF. 

Since not all soft errors can cause erroneous program 
execution, the probability that a fault in a hardware structure 
will cause an externally visible error in the final output of a 
program is referred to as the architectural vulnerability factor 
(AVF) of that hardware structure. A hardware structure’s error 
rate is the product of its raw error rate, mainly determined by 
device and circuit design technology, and the AVF. The key to 
calculating the AVF is to determine which bits affect the final 
system output and which do not. In [22], a subset of processor 
state bits required for architecturally correct execution (ACE) 
are called ACE bits. Hence, the AVF of a hardware structure 
in a given cycle is the percentage of the ACE bits in that 
structure. The AVF of a hardware structure during program 
execution is the average AVF at any point in time.  
3. The Sim-SODA Reliability Estimation 
Framework 
3.1. Overview 

We have developed Sim-SODA, an architectural framework 
to estimate the reliability of programs running on high-
performance, out-of-order microprocessors. To track the 
residence time of ACE bits in various structures, we 
instrumented Sim-alpha, an open source, validated cycle-
accurate performance simulator for Alpha 21264. In the Sim-
SODA framework, we classify each dynamic instruction of a 
programs execution based on whether the instruction’s output 
affects the outcome of that program. Since instructions 
executed along a mispredicted path will not be committed, and 



do not affect AVF, we only considered committed instructions. 
We consider an instruction an ACE instruction if its results 
might affect the final program output, and an instruction un-
ACE if its results definitely will not affect the program output. 
Bits in an ACE instruction are ACE, but an un-ACE 
instruction contains both ACE and un-ACE bits (details are 
explained in [22]). Additionally, we classify one type of un-
ACE instruction dynamically dead if its results are not used 
subsequently (more detailed classification of un-ACE 
instructions will be introduced in section 5.1). In Sim-SODA, 
we implemented the post-commit analysis window proposed 
in [22] to determine if the instruction is dynamically dead or if 
there are any bits that are logically masked. Through cycle-
level simulation, both microarchitecture and architecture states 
are classified into ACE/un-ACE bits and their residency and 
resource usage counts are generated. This information is then 
used to estimate the reliability of various hardware structures.  

3.2. Fine-grained Reliability Estimation 
3.2.1. Instruction Window 

In high performance processors, the instruction window is 
used to support dynamic scheduling and out-of-order 
execution. In [22], the instruction window is treated as a bulk 
structure. Sim-SODA provides fine-grained reliability analysis 
for the instruction window. When an instruction completes its 
execution, its destination register ID is broadcasted to all the 
instructions in the window to inform all dependent instructions 
of the availability of the result. Each entry compares the 
broadcasted register ID with its own source register ID. If 
there is a match, the source operand is latched and the 
dependent instruction may be ready to execute. This register 
ID broadcast and associated comparison is called instruction 
wake-up. A soft error that results in an incorrect match 
between a broadcasted physical register ID and a corrupted tag 
may cause instructions waiting for that operand to be issued 
pre-maturely. A single bit error in the tag array that results in a 
mismatch where there should have been a hit can prevent 
ready instructions from being issued, causing a deadlock in 
issuing instructions. Therefore, the wake-up table is vulnerable 
to soft error strikes. The Sim-SODA framework estimates the 
vulnerability of both the instruction window and the wake-up 
table. 

When a new instruction is allocated in the instruction 
window, the wake-up table records the renamed physical 
register IDs of instructions on which that instruction depends. 
There are two fields in each wake-up table entry to hold the 
renamed register IDs for the two source operands of an 
instruction. A field in the wake-up table entry becomes invalid 
once the source operand is ready. The operations on the wake-
up table include “fill”, “read” and “invalidate”; therefore, its 
non-overlapping lifetime can be partitioned into fill-to-read, 
read-to-read and invalidate-to-fill periods. Note that there is no 
read-to-invalidate component because the last read between 
fill and invalidate will cause a match between the stored 
register ID and the broadcasted register ID. Once there is a 
match, the field in the wake-up table will become invalid 
immediately. In other words, the lifetime of the read-to-

invalidate component in the wake-up table is always zero. 
Therefore, we combine fill-to-read and read-to-read 
components together, and attribute the invalidate-to-fill 
component as un-ACE. 
3.2.2. Trivial Instruction 

In [22], Mukherjee et al identified logical masking 
instructions as a source of un-ACE bits. An operand and its 
bits are logically masked and can be attributed to un-ACE bits 
if the operand does not influence the result of an instruction 
execution. In their study, Mukherjee et al considered three 
types of logical masking instructions: compare instructions 
prior to a branch, bitwise logical operations and 32-bit 
operations in a 64-bit architecture. In this study, we identified 
further logical masking bits. We found that the bits used to 
encode the specifiers of source registers which hold logically 
masked values are un-ACE bits. This is because a corrupted 
register specifier may cause the processor to fetch the wrong 
data from a different register. Nevertheless, the computation 
result will not be altered because of the logical masking effect. 

Additionally, we extend logical masking instructions to 
trivial instructions [29] in this study. Trivial instructions are 
those computations whose output can be determined without 
performing the computation, so they cover all the un-ACE bits 
that logical masking instructions can identify. In this study, we 
further classified the trivial instructions into the following 
three categories. The first type of trivial instructions has two 
source registers. For these trivial instructions, a soft error is 
tolerant when it strikes a register whose contribution to the 
computation result is masked by the second register. For 
example, in a multiplication instruction, if one of the source 
registers is equal to zero, a soft error that hits the other register 
would not affect the result. Therefore, the bits held by that 
source register are un-ACE bits. Additionally, the bits used for 
encoding the other source register specifier within the same 
instruction are also un-ACE bits. The second type of trivial 
instructions contains an immediate value and only one source 
register. The bits in the source registers can be considered un-
ACE when the immediate value masks the instructions 
contribution to the computation results.  Similarly, bits in the 
immediate value can be considered un-ACE when the source 
register doesn’t affect the computation result. The source 
register specifier bits in that instruction become un-ACE if the 
value held in that register is un-ACE. Note that in both types 
of trivial instructions, only one of the source operands can be 
considered un-ACE at a time, since a soft error hit to the 
operand which provides the masking function will skew the 
computation results. The last type of trivial instructions is 
specific to XOR and EQV operations (see Table 2). For these 
two operations, when the first and second register specifiers 
are identical, bits in that register are un-ACE. Table 2 
summarizes the trivial instructions identified by the Sim-
SODA framework. The particular source operand value that 
trivializes the operation is also listed. 

Integer adds and subtractions are not included in Table 2. 
This is because their computation results depend on both 
operands. A bit change in either operand may result in 
incorrect computation output. Integer divisions are not listed 



in Table 2 because a division operation is implemented 
through multiplication instructions in Alpha instruction set [8, 
9, 16]. Note that trivial instructions can be dynamically dead 
instructions also. If an instruction is both a trivial instruction 
and a dynamically dead instruction, we attribute it to the 
dynamically dead instructions because more un-ACE bits can 
be derived from that type of instruction. In other words, trivial 
instructions analyzed by the Sim-SODA framework are special 
ACE instructions that have un-ACE bits in the instructions and 
their registers. 

Table 2. Trivial Instructions (in Alpha ISA) identified  
by Sim-SODA 

3.3. Reliability Estimation of Unexplored 
Structures  
3.3.1. Hybrid AVF Computation for Register Files 

 The register files hold the architectural state of program 
execution. Previous studies [19, 25, 27] show that the register 
files are highly vulnerable to soft errors. In these studies, the 
reliability analysis of register files was performed by injecting 
faults statistically or modeling error propagation. The AVF 
calculation for register files has not been addressed. 

When comparing register files with the data cache, we 
summarize some common characteristics between the two. 
The register files are similar to the data array in a data cache: 
both are used to keep values for instruction execution. 
Activities occurring during the lifetime of a bit in the register 
files also include “idle”, “fill”, “read”, “write” and “evict”. 
Therefore, if we follow the methodology to compute the AVF 
for address-based structures [4], we can also classify the 
register files’ lifetimes into non-overlapping ACE or un-ACE 
periods. For example, idle, read-to-write and write-to-write are 
un-ACE, while fill-to-read and write-to-read are ACE. 
However, the calculation of register files’ AVF in this way can 
be very conservative. This is because unlike the data cache, 
registers are heavily utilized and write and read operations 
occur very frequently. 

To obtain a more realistic estimate of register files’ AVF, 
we analyzed each ACE lifetime component to discover which 
operations on the bits convert ACE lifetime to un-ACE 
lifetime. We found that not every read affects the final 
program output. For example, if there is a read caused by a 
dynamically dead instruction, the final output will not change 
even if the data is incorrect. Written data is also un-ACE when 

the write is caused by a dynamically dead instruction. 
Additionally, as described in section 3.2.2, when a trivial 
instruction has a read operation on bits of the register files, the 
read data is un-ACE if it doesn’t affect the result of the 
instruction. Since we combine ACE/un-ACE lifetime analysis 
with an instruction analysis window (which is used to detect 
dynamically dead instructions and trivial instructions, see 
section 4), we call our method a hybrid AVF computation 
scheme. 

A write to the register file is usually followed by more than 
one read. Two types of reads can occur.  The first is caused by 
ACE instructions and we call it an ACE read. The second is 
caused by dynamically dead or trivial instructions and we call 
it an un-ACE read. Whether to convert ACE lifetime to un-
ACE lifetime depends on the order un-ACE reads take place 
among all the reads after a write. We identified three cases 
based on the order of un-ACE read operations. First, as Figure 
1 (A) shows, un-ACE reads (marked as read*) occur closely 
after the write activity. The second case is shown in Figure 1 
(B). There are one or more ACE reads before and after un-
ACE reads. In the third case, as illustrated by Figure 1 (C), 
there are no more ACE reads but another write or evict 
follows un-ACE reads. In Figure 1 (A) and (B), un-ACE reads 
can not be converted from ACE time into un-ACE time since 
they are followed by ACE reads which can not bear any soft 
error. In Figure 1 (C) if we follow the methodology applied in 
address-based structure AVF computation [4], the lifetime 
component between the last ACE read and the last un-ACE 
read should be identified as ACE, however, we can convert it 
into un-ACE since there are no more ACE reads following un-
ACE reads. To calculate the un-ACE lifetime, we identify the 
last ACE read after the write and then attribute the remaining 
lifetime between it and the next write or evict to un-ACE. 

 

 

 
Figure 1. ACE and un-ACE lifetime partitions due to the 
different orders of un-ACE reads (marked as read*) and 
ACE reads 

Similar to the data cache array, edge effects also arise in 
register files’ AVF computation. For example, if the 
simulation ends at a point after a write to the register files 
completes, we can not determine whether the period between 
that write and the ending point is ACE lifetime or un-ACE 
lifetime. Therefore, we have to count the above period as 
unknown. Since COOLDOWN mechanism [4] has a 
remarkable impact on reducing the unknown portion of a data 

Type Operation Triviality 
Condition 

MULL/MULQ/MULH: A * B A=0 or B=0 
AND: A & B A=0 or B=0 
BIS: A | B A=1 or B=1 
BIC: A & ~ B A=0 or B=1 

I 

ORNOT: A | ~ B A=1 or B=0 
MULLI/MULQI/MULHI/: A * IMM A=0 or IMM=0
ANDI: A & IMM A=0 or IMM=0
BISI: A | IMM A=0 or IMM=1
BICI: A & ~ IMM A=0 or IMM=1

II 

ORNOTI: A | ~ IMM A=0 or IMM=0
XOR: A ^ B A=B III 
EQV: A ^ ~B A=B 



cache array’s AVF, we applied the COOLDOWN strategy to 
compute register files’ AVF. 

The granularity at which we maintain the lifetime 
information can have a significant impact on register files’ 
AVF. We can’t set the granularity to 64-bit; since not all of the 
instructions defined in the Alpha Instruction set [8, 9, 16] 
consume the whole 64-bit data word (a register in Alpha 
21264 processor is 64-bit). They read or write 32-bit data 
occasionally, which means the other 32-bits in that register are 
idle at that time. The methodology used to compute the AVF 
of address-based structures [4] partitions a tag-based structure 
into two parts: data array and tag array. Since register files are 
specified by their identifiers instead of tag array, there is no 
false positive or false negative match in the register files’ AVF 
computation. Because the case in which read data from 
register files is less than 32-bit occurs infrequently, it is 
unnecessary to perform per-byte analysis, or even more 
detailed per-bit analysis such as the one we used to analyze the 
logical masking effect. In this study, we maintain granularity 
for register files’ AVF analysis as 32-bit. 
3.3.2. ROB AVF Computation 

In an out-of-order execution microprocessor, the reorder 
buffer (ROB) stores all uncommitted instructions. To 
effectively exploit ILP, modern processors use large ROB, 
implying its AVF can greatly affect the AVF of the entire chip. 
We have developed an ROB AVF model for the Sim-SODA 
framework. 

Data in each ROB entry is allocated for an on-the-fly 
instruction. A ROB entry includes instruction number, register 
specifiers and operands. If an instruction is un-ACE, program 
output will not be affected, so bits in that entry are un-ACE 
bits. If an instruction is a trivial instruction, some bits in that 
entry are un-ACE. In the Sim-SODA framework, we use an 
instruction analysis window and trivial instruction 
classification to identify these scenarios in the ROB. 
3.3.3. Victim Buffer’s AVF Computation 

The Sim-SODA framework models the AVF of a victim 
buffer. Whenever there is a cache miss in the L1 cache, the 
replaced block will be evicted to the victim buffer. Since the 
evicted block may be recalled by the program again, any 
single bit error in it can cause incorrect program output. The 
victim buffer is also an address-based structure, and only has 
“fill”, “read”, “evict” and “end” activities. We classified no-
overlapping ACE, un-ACE and unknown lifetime components 
on it. For example, fill-to-read, read-to-read are ACE; read-to-
evict, fill-to-evict, evict-to-fill, evict-to-end are un-ACE; and 
fill-to-end, read-to-end are unknown. We used COOLDOWN 
and hamming distance one mechanisms introduced in [4] to 
accurately compute AVF. 

The above AVF models can be integrated into a range of 
architectural simulators to provide reliability estimates. To 
implement these AVF models into a unified, timing accurate 
framework, we have instrumented the Sim-Alpha architectural 
simulator. We chose Sim-Alpha because previous work [11, 
12] has shown that Sim-Alpha can accurately model an Alpha 
21264 processor, and in [11, 12], the authors showed that Sim-
Alpha is much more accurate than Simplescalar for modeling 

real hardware We have extended the simulator with a post-
commit instruction analysis window (with a size of 40,000 
instructions) which supports the identification of dynamically 
dead and trivial instructions. The Sim-SODA framework also 
includes AVF models for cache, TLB, and load/store queue. 
We used synthesized micro-benchmarks with known 
characteristics to validate the Sim-SODA framework. The 
dynamically dead and trivial instructions and the ACE and un-
ACE time reported by Sim-SODA match our expectation in the 
micro-benchmarks. 

4. Experimental Setup 
Using the Sim-SODA framework, we performed a detailed 

reliability analysis of an Alpha-21264-like microprocessor 
running a wide range of applications. To help the reader 
understand the experimental results, we describe the simulated 
machine configuration and the experimented benchmarks in 
this section. 
4.1. Simulated Machine Configuration 

We configured Sim-SODA to simulate an Alpha-21264-like 
microprocessor. Table 3 summarizes the simulated machine 
configuration. 

Table 3. Simulated Machine Configuration 
Parameter Configuration 

Pipeline depth  7 
Integer ALUs/multi 4/4 
Integer ALU/multi latency 1/7 
Fetch/slot/map/issue/commit width 4/4/4/4/11 instructions per cycle 
Issue queue size  20 
Reorder buffer size  80 
Register file size 80 
Load/store queue size  32 

Branch predictor  Hybrid, 4K global + 2-level 1K 
local+ 4K choice  

Return address stack  32-entry 
Branch misprediction penalty  7 cycles 

L1 instruction cache  64KB instruction/64KB data,2-
way, 64B line, 1-cycle latency 

L1 data cache  64KB instruction/64KB data,2-
way, 64B line, 3-cycle latency 

L2 cache  2048KB, direct mapped, 64B 
line, 7-cycle latency 

TLB size  128-entry ITLB/128-entry 
DTLB, fully-associative 

MSHR entries  8/cache 
Prefetch MSHR  entries 2/cache 
Victim buffer 8 entries, 1-cycle hit latency 

4.2. Simulated Workloads 
The workloads we used in this study include 12 programs 

from SPEC 2000 INT and 6 programs from BioInfoMark [20]. 
We didn’t include SPEC 2000 FP benchmarks because Sim-
Alpha does not model floating point pipeline execution 
accurately [11]. To reduce the simulation time while still 
maintaining representative program behavior, we obtained the 
number of instructions to skip using SimPoint analysis [26] 
and run each SimPoint for 50 million instructions. Table 4 lists 
the skipped instructions and the input data set for each 
benchmark. The numbers we present in this paper are results 
for the first SimPoint of each benchmark. 



We abbreviate the input names as follows: bzip2-source is 
bzip2-s, gcc-166 is gcc-1, eon-rushmeier is eon-r, gzip-
graphic is gzip-g, parser-dict is parser-d, perlbmlk-splitmail is 
perlbmlk-s, vpr-route is vpr-r, clustalw-ureaplasma is 
clustalw-u, dnapenny-ribosomal is dnapenny-r, glimmer-
bacteria is glimmer-b, hmmer-SWISS-PORT is hmmer-S, 
predator-eukaryote is predator-e, promlk-17 species is 
promlk-1. 

Table 4. SPEC 2000 INT and BioInfoMark Benchmarks 
(The data set name is integrated with the benchmark name) 

5. Experimental Results 
This section presents the architecture vulnerability 

estimation of the studied workloads running on the simulated 
machine. Section 5.1 illustrates software vulnerability at the 
instruction level. Section 5.2 reports vulnerability 
characterization of major microarchitecture structures. Section 
5.3 presents the phase behavior of program vulnerability on 
various hardware structures and their correlations with 
program performance statistics. 
5.1. Program Vulnerability Profile at Instruction 
Level 

Figure 2 shows an instruction level vulnerability profile of 
the studied benchmarks. On average, 69% and 73% of the 
committed instructions are ACE instructions for SPEC 2000 
integer and BioInfoMark suites respectively. The un-ACE 
instructions include NOPs, prefetch and dynamically dead 
instructions. As suggested in [22], dynamically dead 
instructions can be classified into two types: (1) first-level 
dynamically dead (FDD) if their computation results are 
simply not read by any other instructions, or (2) transitively 
dynamically dead (TDD) if their results are only consumed by 
FDD or other TDD instructions. The “Unknown” refers to 
those instructions whose destination registers’ lifetimes can 
not be determined by the instruction analysis window.  

As shown in Figure 2, NOPs and FDD instructions 
(FDD_reg and FDD_mem) dominate un-ACE instructions In 
this study, we found 10% NOPs in the SPEC2000 integer suite. 
This is the same as the NOPs fraction Fahs et al [14] reported 
in SPEC2000 integer using the Alpha instruction set. TDD 
instructions (TDD_reg and TDD_mem) contribute a negligible 
fraction (e.g. less than 1%) of un-ACE instructions. Similar to 
the results reported in [22], our study shows that the fraction 
of FDD_reg (11% in SPEC and 9% in BioInfoMark) 

instructions is normally higher than that of FDD_mem (7% in 
both benchmark suites) instructions. The fraction of TDD and 
FDD instructions reported by Sim-SODA framework is 17% in 
SPEC2000 suite and it is close to that reported in [14] (14% 
FDD and TDD instructions tracked via register and memory). 

 
Figure 2. Instruction Level Vulnerability Profile of the 
Studied Benchmarks 
5.2. AVF of Major Microarchitecture Structures7 

This section presents AVF profiles of the instruction 
window, wake-up table, register file, data cache, TLB, victim 
buffer and load/store queues. Per-structure AVF estimates 
help hardware designers estimate the reliability of major 
hardware components at an early design stage. 
5.2.1. Instruction Window 

Figure 3 shows the AVF of the instruction window. We 
further decompose ACE bits stored in the instruction window 
based on their instruction types. As can be seen, the dominant 
portion of ACE bits in the instruction window comes from 
ACE instructions. For prefetch and NOP instructions, only 
instruction opcodes are ACE bits [22]. In this work, we count 
all the opcode and destination register specifier bits of FDD 
and TDD instructions as ACE bits; all other instruction bits 
are un-ACE bits [22].  

Figure 3 shows that the instruction window’s AVF ranges 
from 26% (gzip) to 62% (gap) in SPEC 2000 and from 44% 
(dnapenny) to 84% (clustalw) in BioInfoMark respectively. 
On average, the AVF of the instruction window is 42% and 
52% in SPEC 2000 and BioInfoMark. Biological multiple 
sequence alignment benchmark clustalw has the highest AVF. 
This is because clustalw has the highest ACE instruction 
fraction (e.g. 90% as shown in Figure 2). Instruction residency 
time in the instruction window also affects the AVF result, so 
the benchmark promlk yields a higher AVF than hmmer even 
though its ACE instruction fraction is lower than hmmer (58% 
vs. 85% respectively). 

 

 
Figure 3. AVF of Instruction Window 

SPEC 2000 
INT 

Instructions  
Fast Forwarded  BioInfoMark 

Instruction 
Fast 

Forwarded 
bzip2-s 64 M clustalw-u 20,400 M 
gcc-1 30 M dnapenny-r 140 M 
crafty 123 M glimmer-b 20 M 
eon-r 216 M hmmer-S  27,200 M 
gap 88 M predator-e 25,900 M 
gzip-g 1 M promlk-1 320 M 
mcf 143 M   
parser-d 1,771 M   
perlbmlk-s 1 M   
twolf 312 M   
vortex-3 47 M   
vpr-r 3 M   



Figure 4 shows the AVF of the instruction window, the 
wake-up table and the aggregated results (i.e. considering the 
instruction window and the wake-up table as a single 
structure). We can see the AVF of the wake-up table is much 
lower than that of the instruction window. This is because an 
instruction’s ACE time in the wake-up table is always shorter 
than the instruction’s residency time in the instruction window. 
An instruction may still need to wait for a function unit by 
staying in the instruction window after all of its source 
operands are ready. As shown in Figure 4, the aggregated 
results do not reduce significantly (4%-10% in SPEC 2000 
and 6%-9% in BioInfoMark). This is because the number of 
bits contained in the wake-up table is less than that in the 
instruction window. 

                                                
Figure 4. AVF of Instruction Window and Wake-up Table 

5.2.2. Reorder Buffer 

Figure 5 shows the AVF of the reorder buffer. Interestingly, 
the ROB’s AVF is significantly lower than that of the 
instruction window. This is due to the following effect. The 
Alpha-21264 processor has separate integer and floating point 
instruction windows. The integer instruction window has 20 
entries. The ROB is used to hold all types of instructions and 
the size of the ROB is 80 entries. Because of the lack of 
floating point operations, the fraction of idle bits in the ROB is 
much higher than that in the instruction window. 

 
Figure 5. AVF of ROB 

5.2.3. Register Files 
Sim-SODA models both the high and low 32 bit of the 

physical registers. In this paper, we report the average AVF of 
the entire 64-bit registers. As shown in Figure 6, hybrid AVF 
computation can reduce register files’ AVF on many 
workloads (e.g. 9% on crafty, 10% on promlk and 13% on 
predator). On average, hybrid AVF calculation reduces 
register files’ AVF by 4% and 5% on SPEC 2000 and 
BioInfoMark respectively. 

 
Figure 6. AVF of Register Files 

5.2.4. Function Unit 

We assume each function unit has about 50% control 
latches and 50% datapath latches, and the datapath within it 
has a width of 64 bits. The AVF numbers shown in Figure 7 
are the average statistics of all four function units. We apply 
trivial instruction analysis to each function unit to further 
attribute un-ACE bits to different instructions. The semantics 
of trivial instructions implies that at least one input value to 
the function unit can be un-ACE. There are other instructions 
that only produce 32-bit outputs. In that case, the upper 32-bits 
in the output data path become idle. As is shown, function unit 
AVF bits are mainly caused by the operands of ACE 
instructions as well as the output of those instructions. 
Because the majority of instructions have two input operands 
and one output operand, the input bits contribute more ACE 
bits in the function units than the output bits do. 

 
Figure 7. AVF of Function Unit 

5.2.5. Data Cache, TLB, Victim Buffer Load and Store 
Queues 

The level 1 data cache, data TLB, victim buffer and 
load/store queues are address-based structures. We applied 
lifetime analysis to both tag and data arrays of these structures 
and classified lifetime into ACE, un-ACE and unknown 
components. The Sim-SODA framework uses bit level analysis 
for tag array and byte level analysis for data array. We 
implemented the COOLDOWN mechanism to reduce the 
unknown fraction since edge effect can be significant in these 
structures [4]. To avoid false positive and false negative 
matches in the tag array, we have also implemented the 
hamming-distance-one analysis method [4] in Sim-SODA. 

Figure 8 and 9 show the data array and the tag array AVF 
for L1 data cache (DL1), data TLB (DTLB), victim buffer 
(VBuf), load queue (LQ) and store queue (SQ). As can be seen, 
the L1 data cache tag array’s AVF is higher than the data 
array’s AVF. This is because the L1 data cache in the Alpha 



21264 [17, 18] is a write-back cache and the cache tag must be 
correct at eviction time. Therefore, all bits of the tag are ACE 
from the time that there is any write activity that occurs in that 
entry until it is evicted. The same scenario happens in load and 
store queues. In contrast, the victim buffer tag array’s AVF is 
lower than the data array’s AVF. This is because it is a write-
through cache and the ACE time in the tag array is much 
lower. 
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Figure 8. Data Array AVF of L1 Data Cache (DL1), Data 
TLB (DTLB), Victim Buffer (VBuf), Load Queue (LQ) 
and Store Queue (SQ) 
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Figure 9. Tag Array AVF of L1 Data Cache (DL1), Data 
TLB (DTLB), Victim Buffer (VBuf), Load Queue (LQ) 
and Store Queue (SQ) 
5.3. Program Dynamic AVF Behavior 

We have performed simulations using Sim-SODA to 
correlate AVF with processor performance statistics such as 
instructions completed per cycle. We collected the average 
AVF and performance statistical data for fixed chunks of 
10,000 instructions. The sampled vulnerability and 
performance statistics on benchmarks gcc and gap are shown 
in Figure 10. 

Figure 10 shows that similar to performance metric IPC, 
microarchitecture AVF also demonstrates phase behavior. For 
example, the AVF of instruction window correlates well with 
IPC on benchmark gcc whereas on benchmark gap, low IPC 
phase exhibits high AVF. These statistics were then correlated 
with each other after the simulation completed. An example of 
the correlation data for each of the studied benchmarks is 
shown in Table 5. The columns of this table show correlation 
coefficients between processor IPC and the AVF of the 
instruction window, ROB, FU and the wakeup table. Table 5 
shows that the wake-up table’s AVF correlates very strongly 
with performance. This is because the lifetime of ACE bits in 
the wake-up table strongly depends on the number of cycles 
that the processor completes instructions. In general, we found 
that the correlation coefficients vary significantly across 

different benchmarks. This implies that architectural 
independent characteristics such as fraction of NOPs and 
dynamically dead instructions in a code segment affect 
program run-time AVF behavior.  

Interestingly, we found that microarchitecture AVF does 
not always positively correlate with IPC. Intuitively, high IPC 
reduces the ACE bits residency time in microarchitecture 
structures. On the other hand, the high ILP in a program can 
cause the microprocessor to aggressively bring more 
instructions into the pipeline, increasing the total number of 
ACE bits. The positive and negative correlation coefficient 
values imply that AVF is also related with program inherent 
behavior. The above observations indicate that accurate AVF 
modeling should consider aspects of both hardware and 
software. For example, program characteristics of a given 
code segment (e.g. instruction mix, logical masking 
instructions) can be combined with hardware performance 
counters (e.g. pipeline stalls, IPC) to produce accurate AVF 
estimates for software at run time. 

Table 5. Correlation between IPC and AVF 
AVF Correlation 

Coefficient Instruction 
Window ROB FU Wake-up

Table 
bzip2-s 0.14 0.18 0.15 -0.13 
gcc-1 0.59 0.44 0.27 0.48 
crafty 0.11 0.08 0.12 0.64 
eon -0.07 -0.16 0.14 -0.40 
gap -0.77 -0.94 0.94 -0.18 
gzip-g 0.53 -0.16 0.72 0.87 
mcf 0.69 0.59 0.65 0.99 
parser-d 0.22 -0.06 0.45 -0.33 
perlbmlk-s -0.13 -0.32 -0.32 -0.27 
twolf -0.06 -0.03 -0.09 0.73 
vortex-3 0.14 -0.02 -0.01 -0.31 
vpr-route 0.15 -0.21 0.05 0.63 
clustalw-u 0.09 0.76 -0.18 0.78 
dnapenny-r 0.12 -0.01 -0.05 0.74 
glimmer-b 0.23 -0.04 0.29 0.27 
hmmer-S  0.37 0.24 0.01 0.67 
predator-e -0.01 0.07 -0.03 0.99 
promlk-1 0.01 -0.28 -0.46 -0.53 

6. Conclusions 
Semiconductor transient faults have become an increasing 

challenge for reliable software execution. To explore cost-
effective fault tolerant mechanisms for dependable execution 
of the next generation of software, researchers clearly need to 
analyze program vulnerability to soft errors at a high level and 
at an early design stage. We have developed Sim-SODA, a 
unified framework to estimate software vulnerability to transit 
faults at the architectural level. The foundations for our 
vulnerability modeling infrastructure are parameterized AVF 
models of microarchitecture structures present in modern 
high-performance microprocessors. Compared with previously 
proposed tools, Sim-SODA provides fine-grained AVF models 
and covers more hardware structures. Using the Sim-SODA 
framework, we profile AVF characteristics of the majority of 
hardware structures in an Alpha-21264-like microprocessor 
[17, 18]. Currently, Sim-SODA does not model the 



vulnerability of the floating point pipeline. Additionally, Sim-
SODA does not model the AVF contribution of combinational 
logic due to their negligible impact reported in other studies 
[22]. Extensions to the simulator infrastructure and the 

creation of additional modules are topics of future research. 
We feel reliability estimation infrastructure such as Sim-SODA 
will be useful to research on architecture and compiler 
approaches to optimize software dependability. 
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Figure 10. Microarchitecture AVF Dynamics on Benchmarks gcc (left) and gap (right) 
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