
Sim-SODA: A Unified Framework for Architectural Level
Software Reliability Analysis

Xin Fu

Department of ECE

University of Florida
xinfu@ufl.edu

Tao Li

Department of ECE
University of Florida

taoli@ece.ufl.edu

José A. B. Fortes

Department of ECE
University of Florida
fortes@acis.ufl.edu

Abstract

Semiconductor transient faults (soft errors) are becoming
an increasingly critical threat to reliable software execution.
With the advent of the billion transistor chip era, it is
impractical to protect the entire hardware. As a result, it is
crucial that the tradeoffs between reliability and performance
be made at the architecture design stage. To achieve this goal,
researchers need a framework to evaluate software
vulnerability to transient errors at a high level. This paper
describes Sim-SODA (SOftware Dependability Analysis), a
unified framework for estimating microprocessor reliability in
the presence of soft errors at the architectural level.
Compared with previous studies, Sim-SODA covers more
hardware structures and provides fine-grained reliability
analysis. We present a detailed architectural reliability profile
of an Alpha-21264-like superscalar microprocessor running
workloads from various application domains. Additionally, we
obtain program vulnerability phases and correlate them with
microprocessor performance metrics.

1. Introduction
High availability and reliability are essential for any

computer system. It is well known that program bugs and
administration time account for the majority of system
downtime and loss of availability. Recently, semiconductor
transient faults have become an increasing cause of failures in
modern computer systems [2, 27, 28]. Transient faults, also
known as soft errors, are caused by cosmic rays or substrate
alpha particles that can potentially alter program run-time
states. As semiconductor processing technology moves toward
smaller and denser transistors, lower threshold voltages and
tighter noise margins, soft error rates of current and future
hardware are projected to increase significantly [15, 21, 23].

Methodologies to tolerate the deleterious effect of soft
errors on program execution at low levels exist. For example,
radiation-hardening techniques can be used in circuit and logic
designs to reduce the likelihood of a single event upset due to
soft errors [7]. In [30], SMT capability is exploited to execute
a redundant thread to tolerate faults in the main thread.
Nevertheless, these approaches can cause a significant
overhead in performance, power, area, and design verification
if they are used to protect the entire hardware which may
contain billions of transistors. Architectural techniques to
increase software reliability under soft errors are becoming
imperative. To make appropriate performance, cost, and
reliability trade-offs; designers clearly need infrastructures

that can estimate microprocessor dependability 1 at a high
level and at an early design stage. Such tools can be very
useful in identifying structures with a high vulnerability and
to apply appropriate fault tolerance mechanisms to minimize
performance and cost overhead. Using architectural level
dependability estimation tools, designers can compare the
reliability of different architectural alternatives. Additionally,
architectural level simulation tools can help programmers
explore the design space of reliability-aware software and
verify that a given program execution meets the dependability
target on a hardware platform.

This paper describes Sim-SODA (SOftware Dependability
Analysis), an architectural level simulator for software
reliability analysis. Sim-SODA estimates the dependability of
hardware components in a high-performance, out-of-order
superscalar microprocessor using the computation methods
introduced in [4, 22]. Compared with previous studies [4, 19,
22], Sim-SODA provides fine-grained reliability analysis and
covers more hardware structures. While previous architectural
reliability analysis tools were built on proprietary
performance models [13, 24], Sim-SODA uses an open source,
publicly available simulator Sim-Alpha [11, 12], which makes
porting the reliability analysis framework described in this
paper to other popular simulator tool suites (such as
Simplescalar[6] and M5 [3]) relatively easy.
1.1. Prior Work

There has been prior work on dependability modeling at a
high level. For example, hardware RTL models have been
used in the past to estimate processor reliability [25, 27]. The
RTL models contain all of the detailed information about the
microprocessors. Nevertheless, the simulation slowdown of
RTL models is too expensive for architecture studies, in
which the tradeoffs between many hardware configurations
need to be considered. Moreover, these models are generally
not available during the architectural exploration phase of a
microprocessor design. The Architectural Vulnerability Factor
(AVF) analysis methods proposed by Mukherjee et al used a
performance model to generate reliability estimates. In [4, 22]
the vulnerability of hardware structures (e.g. instruction queue,
execution unit, TLB and caches) of an Itanium2-like IA64
processor was studied. In [1], Asadi et al estimated the
vulnerability of L1 cache through the residency time of
critical words in the cache. In [19], Li and Adve developed
SoftArch, an architecture level tool for modeling and
analyzing soft errors. The SoftArch framework estimates
reliability using a probabilistic model of the error generation

1 In this paper, we use dependability and reliability
interchangeably.

Table 1. A Comparison of Different Architectural Level Reliability Analysis Tools

Metrics Mukherjee et al[22]
Biswas et al [4]

Wang et al
[27]

SoftArch
[19]

Sim-SODA
[this paper]

Methodology AVF Statistic fault injection Probabilistic model of error
generation and propagation

AVF, AVF for address-based
structures and hybrid AVF
computing

Hardware
Structures
Modeled

Instruction queue, function
unit, Data cache and TLB,
store buffer

Pipeline and its control states
Instruction buffer, decode unit,
register file, functional unit, TLB,
instruction queue

Instruction queue, register file,
function unit, cache, TLB,
ROB, load/store queue, victim
buffer

Baseline Models
and Availability

Asim,
Intel’s proprietary tool for
modeling Itanium 2-like
processor

Verilog model of an Alpha
processor, available at
http://www.crhc.uiuc.edu/ACS/tool
s/ivm/download.html

Turandot, available on request Sim-Alpha, publicly available

Comment
Complex hardware such as
instruction queue is
modeled as bulk structure

A subset of Alpha ISA is modeled.
Caches are not modeled. RTL
model is not usually available at
early design stage

Memory hierarchy is not
modeled. Complex hardware
such as instruction queue is
modeled as bulk structure

Fine-grained AVF models for
complex structures. Covers
more hardware structures

and propagation process in a processor. As a complementary
approach to AVF computation, statistic fault injection has
been used in several studies [5, 10, 25, 27] to evaluate
architectural reliability. To obtain statistic significance, a large
number of experiments need to be performed on an
investigated hardware component. Table 1 summarizes the
features of several architectural reliability estimation tools
from the perspectives of methodology, modeled hardware
structures and the availability of baseline models.
1.2. Contribution of This Work

We have developed Sim-SODA, a unified simulation
framework that models software reliability on microprocessor-
based systems. Compared with prior studies, this work makes
the following contributions: (1) Sim-SODA covers more
hardware structures (e.g. reorder buffer and victim buffer) that
have not been studied before. While the AVF of
microarchitecture structures, such as instruction queue, cache
and load/store buffers have been individually studied before,
Sim-SODA provides a unified infrastructure to study the
reliability of all major units of a high-performance
microprocessor with a single run. (2) In Sim-SODA, we
propose using a fine-grained reliability analysis to improve the
accuracy of AVF estimation. We also propose a hybrid
method that can be used to accurately estimate the
vulnerability of complex structures such as register files. To
our knowledge, AVF of register files has not been well
understood in previous publications. (3) Our work
characterizes run-time hardware vulnerability dynamics and
its correlation with performance. We show that using a simple
performance metric is not sufficient in capturing hardware
vulnerability. This observation has not been made in previous
studies. (4) Sim-SODA was built on the open source and
publicly available Sim-Alpha simulator while all other
architectural reliability simulators were built on proprietary
frameworks. We show that Sim-SODA will be a very useful
tool for reliability-aware software/hardware design and
optimization.

The rest of this paper is organized as follows. Section 2
provides a brief introduction of reliability estimation through
AVF computing. Section 3 describes the design of the Sim-
SODA framework, especially focusing on the new features that

we added. Section 4 presents experimental setup including
simulated machine configuration and studied workloads.
Section 5 provides a detailed, component-based reliability
profile of an Alpha-21264-like microprocessor running on a
wide range of applications. Section 6 summarizes the paper
and outlines our future work.
2. Architectural Level Software Vulnerability
Estimation

Sim-SODA estimates microprocessor reliability using the
Architectural Vulnerability Factor (AVF) computing methods
introduced in [4, 22]. In this section, we briefly review the
concept and the computation of AVF.

Since not all soft errors can cause erroneous program
execution, the probability that a fault in a hardware structure
will cause an externally visible error in the final output of a
program is referred to as the architectural vulnerability factor
(AVF) of that hardware structure. A hardware structure’s error
rate is the product of its raw error rate, mainly determined by
device and circuit design technology, and the AVF. The key to
calculating the AVF is to determine which bits affect the final
system output and which do not. In [22], a subset of processor
state bits required for architecturally correct execution (ACE)
are called ACE bits. Hence, the AVF of a hardware structure
in a given cycle is the percentage of the ACE bits in that
structure. The AVF of a hardware structure during program
execution is the average AVF at any point in time.
3. The Sim-SODA Reliability Estimation
Framework
3.1. Overview

We have developed Sim-SODA, an architectural framework
to estimate the reliability of programs running on high-
performance, out-of-order microprocessors. To track the
residence time of ACE bits in various structures, we
instrumented Sim-alpha, an open source, validated cycle-
accurate performance simulator for Alpha 21264. In the Sim-
SODA framework, we classify each dynamic instruction of a
programs execution based on whether the instruction’s output
affects the outcome of that program. Since instructions
executed along a mispredicted path will not be committed, and

do not affect AVF, we only considered committed instructions.
We consider an instruction an ACE instruction if its results
might affect the final program output, and an instruction un-
ACE if its results definitely will not affect the program output.
Bits in an ACE instruction are ACE, but an un-ACE
instruction contains both ACE and un-ACE bits (details are
explained in [22]). Additionally, we classify one type of un-
ACE instruction dynamically dead if its results are not used
subsequently (more detailed classification of un-ACE
instructions will be introduced in section 5.1). In Sim-SODA,
we implemented the post-commit analysis window proposed
in [22] to determine if the instruction is dynamically dead or if
there are any bits that are logically masked. Through cycle-
level simulation, both microarchitecture and architecture states
are classified into ACE/un-ACE bits and their residency and
resource usage counts are generated. This information is then
used to estimate the reliability of various hardware structures.

3.2. Fine-grained Reliability Estimation
3.2.1. Instruction Window

In high performance processors, the instruction window is
used to support dynamic scheduling and out-of-order
execution. In [22], the instruction window is treated as a bulk
structure. Sim-SODA provides fine-grained reliability analysis
for the instruction window. When an instruction completes its
execution, its destination register ID is broadcasted to all the
instructions in the window to inform all dependent instructions
of the availability of the result. Each entry compares the
broadcasted register ID with its own source register ID. If
there is a match, the source operand is latched and the
dependent instruction may be ready to execute. This register
ID broadcast and associated comparison is called instruction
wake-up. A soft error that results in an incorrect match
between a broadcasted physical register ID and a corrupted tag
may cause instructions waiting for that operand to be issued
pre-maturely. A single bit error in the tag array that results in a
mismatch where there should have been a hit can prevent
ready instructions from being issued, causing a deadlock in
issuing instructions. Therefore, the wake-up table is vulnerable
to soft error strikes. The Sim-SODA framework estimates the
vulnerability of both the instruction window and the wake-up
table.

When a new instruction is allocated in the instruction
window, the wake-up table records the renamed physical
register IDs of instructions on which that instruction depends.
There are two fields in each wake-up table entry to hold the
renamed register IDs for the two source operands of an
instruction. A field in the wake-up table entry becomes invalid
once the source operand is ready. The operations on the wake-
up table include “fill”, “read” and “invalidate”; therefore, its
non-overlapping lifetime can be partitioned into fill-to-read,
read-to-read and invalidate-to-fill periods. Note that there is no
read-to-invalidate component because the last read between
fill and invalidate will cause a match between the stored
register ID and the broadcasted register ID. Once there is a
match, the field in the wake-up table will become invalid
immediately. In other words, the lifetime of the read-to-

invalidate component in the wake-up table is always zero.
Therefore, we combine fill-to-read and read-to-read
components together, and attribute the invalidate-to-fill
component as un-ACE.
3.2.2. Trivial Instruction

In [22], Mukherjee et al identified logical masking
instructions as a source of un-ACE bits. An operand and its
bits are logically masked and can be attributed to un-ACE bits
if the operand does not influence the result of an instruction
execution. In their study, Mukherjee et al considered three
types of logical masking instructions: compare instructions
prior to a branch, bitwise logical operations and 32-bit
operations in a 64-bit architecture. In this study, we identified
further logical masking bits. We found that the bits used to
encode the specifiers of source registers which hold logically
masked values are un-ACE bits. This is because a corrupted
register specifier may cause the processor to fetch the wrong
data from a different register. Nevertheless, the computation
result will not be altered because of the logical masking effect.

Additionally, we extend logical masking instructions to
trivial instructions [29] in this study. Trivial instructions are
those computations whose output can be determined without
performing the computation, so they cover all the un-ACE bits
that logical masking instructions can identify. In this study, we
further classified the trivial instructions into the following
three categories. The first type of trivial instructions has two
source registers. For these trivial instructions, a soft error is
tolerant when it strikes a register whose contribution to the
computation result is masked by the second register. For
example, in a multiplication instruction, if one of the source
registers is equal to zero, a soft error that hits the other register
would not affect the result. Therefore, the bits held by that
source register are un-ACE bits. Additionally, the bits used for
encoding the other source register specifier within the same
instruction are also un-ACE bits. The second type of trivial
instructions contains an immediate value and only one source
register. The bits in the source registers can be considered un-
ACE when the immediate value masks the instructions
contribution to the computation results. Similarly, bits in the
immediate value can be considered un-ACE when the source
register doesn’t affect the computation result. The source
register specifier bits in that instruction become un-ACE if the
value held in that register is un-ACE. Note that in both types
of trivial instructions, only one of the source operands can be
considered un-ACE at a time, since a soft error hit to the
operand which provides the masking function will skew the
computation results. The last type of trivial instructions is
specific to XOR and EQV operations (see Table 2). For these
two operations, when the first and second register specifiers
are identical, bits in that register are un-ACE. Table 2
summarizes the trivial instructions identified by the Sim-
SODA framework. The particular source operand value that
trivializes the operation is also listed.

Integer adds and subtractions are not included in Table 2.
This is because their computation results depend on both
operands. A bit change in either operand may result in
incorrect computation output. Integer divisions are not listed

in Table 2 because a division operation is implemented
through multiplication instructions in Alpha instruction set [8,
9, 16]. Note that trivial instructions can be dynamically dead
instructions also. If an instruction is both a trivial instruction
and a dynamically dead instruction, we attribute it to the
dynamically dead instructions because more un-ACE bits can
be derived from that type of instruction. In other words, trivial
instructions analyzed by the Sim-SODA framework are special
ACE instructions that have un-ACE bits in the instructions and
their registers.

Table 2. Trivial Instructions (in Alpha ISA) identified
by Sim-SODA

3.3. Reliability Estimation of Unexplored
Structures
3.3.1. Hybrid AVF Computation for Register Files

 The register files hold the architectural state of program
execution. Previous studies [19, 25, 27] show that the register
files are highly vulnerable to soft errors. In these studies, the
reliability analysis of register files was performed by injecting
faults statistically or modeling error propagation. The AVF
calculation for register files has not been addressed.

When comparing register files with the data cache, we
summarize some common characteristics between the two.
The register files are similar to the data array in a data cache:
both are used to keep values for instruction execution.
Activities occurring during the lifetime of a bit in the register
files also include “idle”, “fill”, “read”, “write” and “evict”.
Therefore, if we follow the methodology to compute the AVF
for address-based structures [4], we can also classify the
register files’ lifetimes into non-overlapping ACE or un-ACE
periods. For example, idle, read-to-write and write-to-write are
un-ACE, while fill-to-read and write-to-read are ACE.
However, the calculation of register files’ AVF in this way can
be very conservative. This is because unlike the data cache,
registers are heavily utilized and write and read operations
occur very frequently.

To obtain a more realistic estimate of register files’ AVF,
we analyzed each ACE lifetime component to discover which
operations on the bits convert ACE lifetime to un-ACE
lifetime. We found that not every read affects the final
program output. For example, if there is a read caused by a
dynamically dead instruction, the final output will not change
even if the data is incorrect. Written data is also un-ACE when

the write is caused by a dynamically dead instruction.
Additionally, as described in section 3.2.2, when a trivial
instruction has a read operation on bits of the register files, the
read data is un-ACE if it doesn’t affect the result of the
instruction. Since we combine ACE/un-ACE lifetime analysis
with an instruction analysis window (which is used to detect
dynamically dead instructions and trivial instructions, see
section 4), we call our method a hybrid AVF computation
scheme.

A write to the register file is usually followed by more than
one read. Two types of reads can occur. The first is caused by
ACE instructions and we call it an ACE read. The second is
caused by dynamically dead or trivial instructions and we call
it an un-ACE read. Whether to convert ACE lifetime to un-
ACE lifetime depends on the order un-ACE reads take place
among all the reads after a write. We identified three cases
based on the order of un-ACE read operations. First, as Figure
1 (A) shows, un-ACE reads (marked as read*) occur closely
after the write activity. The second case is shown in Figure 1
(B). There are one or more ACE reads before and after un-
ACE reads. In the third case, as illustrated by Figure 1 (C),
there are no more ACE reads but another write or evict
follows un-ACE reads. In Figure 1 (A) and (B), un-ACE reads
can not be converted from ACE time into un-ACE time since
they are followed by ACE reads which can not bear any soft
error. In Figure 1 (C) if we follow the methodology applied in
address-based structure AVF computation [4], the lifetime
component between the last ACE read and the last un-ACE
read should be identified as ACE, however, we can convert it
into un-ACE since there are no more ACE reads following un-
ACE reads. To calculate the un-ACE lifetime, we identify the
last ACE read after the write and then attribute the remaining
lifetime between it and the next write or evict to un-ACE.

Figure 1. ACE and un-ACE lifetime partitions due to the
different orders of un-ACE reads (marked as read*) and
ACE reads

Similar to the data cache array, edge effects also arise in
register files’ AVF computation. For example, if the
simulation ends at a point after a write to the register files
completes, we can not determine whether the period between
that write and the ending point is ACE lifetime or un-ACE
lifetime. Therefore, we have to count the above period as
unknown. Since COOLDOWN mechanism [4] has a
remarkable impact on reducing the unknown portion of a data

Type Operation Triviality
Condition

MULL/MULQ/MULH: A * B A=0 or B=0
AND: A & B A=0 or B=0
BIS: A | B A=1 or B=1
BIC: A & ~ B A=0 or B=1

I

ORNOT: A | ~ B A=1 or B=0
MULLI/MULQI/MULHI/: A * IMM A=0 or IMM=0
ANDI: A & IMM A=0 or IMM=0
BISI: A | IMM A=0 or IMM=1
BICI: A & ~ IMM A=0 or IMM=1

II

ORNOTI: A | ~ IMM A=0 or IMM=0
XOR: A ^ B A=B III
EQV: A ^ ~B A=B

cache array’s AVF, we applied the COOLDOWN strategy to
compute register files’ AVF.

The granularity at which we maintain the lifetime
information can have a significant impact on register files’
AVF. We can’t set the granularity to 64-bit; since not all of the
instructions defined in the Alpha Instruction set [8, 9, 16]
consume the whole 64-bit data word (a register in Alpha
21264 processor is 64-bit). They read or write 32-bit data
occasionally, which means the other 32-bits in that register are
idle at that time. The methodology used to compute the AVF
of address-based structures [4] partitions a tag-based structure
into two parts: data array and tag array. Since register files are
specified by their identifiers instead of tag array, there is no
false positive or false negative match in the register files’ AVF
computation. Because the case in which read data from
register files is less than 32-bit occurs infrequently, it is
unnecessary to perform per-byte analysis, or even more
detailed per-bit analysis such as the one we used to analyze the
logical masking effect. In this study, we maintain granularity
for register files’ AVF analysis as 32-bit.
3.3.2. ROB AVF Computation

In an out-of-order execution microprocessor, the reorder
buffer (ROB) stores all uncommitted instructions. To
effectively exploit ILP, modern processors use large ROB,
implying its AVF can greatly affect the AVF of the entire chip.
We have developed an ROB AVF model for the Sim-SODA
framework.

Data in each ROB entry is allocated for an on-the-fly
instruction. A ROB entry includes instruction number, register
specifiers and operands. If an instruction is un-ACE, program
output will not be affected, so bits in that entry are un-ACE
bits. If an instruction is a trivial instruction, some bits in that
entry are un-ACE. In the Sim-SODA framework, we use an
instruction analysis window and trivial instruction
classification to identify these scenarios in the ROB.
3.3.3. Victim Buffer’s AVF Computation

The Sim-SODA framework models the AVF of a victim
buffer. Whenever there is a cache miss in the L1 cache, the
replaced block will be evicted to the victim buffer. Since the
evicted block may be recalled by the program again, any
single bit error in it can cause incorrect program output. The
victim buffer is also an address-based structure, and only has
“fill”, “read”, “evict” and “end” activities. We classified no-
overlapping ACE, un-ACE and unknown lifetime components
on it. For example, fill-to-read, read-to-read are ACE; read-to-
evict, fill-to-evict, evict-to-fill, evict-to-end are un-ACE; and
fill-to-end, read-to-end are unknown. We used COOLDOWN
and hamming distance one mechanisms introduced in [4] to
accurately compute AVF.

The above AVF models can be integrated into a range of
architectural simulators to provide reliability estimates. To
implement these AVF models into a unified, timing accurate
framework, we have instrumented the Sim-Alpha architectural
simulator. We chose Sim-Alpha because previous work [11,
12] has shown that Sim-Alpha can accurately model an Alpha
21264 processor, and in [11, 12], the authors showed that Sim-
Alpha is much more accurate than Simplescalar for modeling

real hardware We have extended the simulator with a post-
commit instruction analysis window (with a size of 40,000
instructions) which supports the identification of dynamically
dead and trivial instructions. The Sim-SODA framework also
includes AVF models for cache, TLB, and load/store queue.
We used synthesized micro-benchmarks with known
characteristics to validate the Sim-SODA framework. The
dynamically dead and trivial instructions and the ACE and un-
ACE time reported by Sim-SODA match our expectation in the
micro-benchmarks.

4. Experimental Setup
Using the Sim-SODA framework, we performed a detailed

reliability analysis of an Alpha-21264-like microprocessor
running a wide range of applications. To help the reader
understand the experimental results, we describe the simulated
machine configuration and the experimented benchmarks in
this section.
4.1. Simulated Machine Configuration

We configured Sim-SODA to simulate an Alpha-21264-like
microprocessor. Table 3 summarizes the simulated machine
configuration.

Table 3. Simulated Machine Configuration
Parameter Configuration

Pipeline depth 7
Integer ALUs/multi 4/4
Integer ALU/multi latency 1/7
Fetch/slot/map/issue/commit width 4/4/4/4/11 instructions per cycle
Issue queue size 20
Reorder buffer size 80
Register file size 80
Load/store queue size 32

Branch predictor Hybrid, 4K global + 2-level 1K
local+ 4K choice

Return address stack 32-entry
Branch misprediction penalty 7 cycles

L1 instruction cache 64KB instruction/64KB data,2-
way, 64B line, 1-cycle latency

L1 data cache 64KB instruction/64KB data,2-
way, 64B line, 3-cycle latency

L2 cache 2048KB, direct mapped, 64B
line, 7-cycle latency

TLB size 128-entry ITLB/128-entry
DTLB, fully-associative

MSHR entries 8/cache
Prefetch MSHR entries 2/cache
Victim buffer 8 entries, 1-cycle hit latency

4.2. Simulated Workloads
The workloads we used in this study include 12 programs

from SPEC 2000 INT and 6 programs from BioInfoMark [20].
We didn’t include SPEC 2000 FP benchmarks because Sim-
Alpha does not model floating point pipeline execution
accurately [11]. To reduce the simulation time while still
maintaining representative program behavior, we obtained the
number of instructions to skip using SimPoint analysis [26]
and run each SimPoint for 50 million instructions. Table 4 lists
the skipped instructions and the input data set for each
benchmark. The numbers we present in this paper are results
for the first SimPoint of each benchmark.

We abbreviate the input names as follows: bzip2-source is
bzip2-s, gcc-166 is gcc-1, eon-rushmeier is eon-r, gzip-
graphic is gzip-g, parser-dict is parser-d, perlbmlk-splitmail is
perlbmlk-s, vpr-route is vpr-r, clustalw-ureaplasma is
clustalw-u, dnapenny-ribosomal is dnapenny-r, glimmer-
bacteria is glimmer-b, hmmer-SWISS-PORT is hmmer-S,
predator-eukaryote is predator-e, promlk-17 species is
promlk-1.

Table 4. SPEC 2000 INT and BioInfoMark Benchmarks
(The data set name is integrated with the benchmark name)

5. Experimental Results
This section presents the architecture vulnerability

estimation of the studied workloads running on the simulated
machine. Section 5.1 illustrates software vulnerability at the
instruction level. Section 5.2 reports vulnerability
characterization of major microarchitecture structures. Section
5.3 presents the phase behavior of program vulnerability on
various hardware structures and their correlations with
program performance statistics.
5.1. Program Vulnerability Profile at Instruction
Level

Figure 2 shows an instruction level vulnerability profile of
the studied benchmarks. On average, 69% and 73% of the
committed instructions are ACE instructions for SPEC 2000
integer and BioInfoMark suites respectively. The un-ACE
instructions include NOPs, prefetch and dynamically dead
instructions. As suggested in [22], dynamically dead
instructions can be classified into two types: (1) first-level
dynamically dead (FDD) if their computation results are
simply not read by any other instructions, or (2) transitively
dynamically dead (TDD) if their results are only consumed by
FDD or other TDD instructions. The “Unknown” refers to
those instructions whose destination registers’ lifetimes can
not be determined by the instruction analysis window.

As shown in Figure 2, NOPs and FDD instructions
(FDD_reg and FDD_mem) dominate un-ACE instructions In
this study, we found 10% NOPs in the SPEC2000 integer suite.
This is the same as the NOPs fraction Fahs et al [14] reported
in SPEC2000 integer using the Alpha instruction set. TDD
instructions (TDD_reg and TDD_mem) contribute a negligible
fraction (e.g. less than 1%) of un-ACE instructions. Similar to
the results reported in [22], our study shows that the fraction
of FDD_reg (11% in SPEC and 9% in BioInfoMark)

instructions is normally higher than that of FDD_mem (7% in
both benchmark suites) instructions. The fraction of TDD and
FDD instructions reported by Sim-SODA framework is 17% in
SPEC2000 suite and it is close to that reported in [14] (14%
FDD and TDD instructions tracked via register and memory).

Figure 2. Instruction Level Vulnerability Profile of the
Studied Benchmarks
5.2. AVF of Major Microarchitecture Structures7

This section presents AVF profiles of the instruction
window, wake-up table, register file, data cache, TLB, victim
buffer and load/store queues. Per-structure AVF estimates
help hardware designers estimate the reliability of major
hardware components at an early design stage.
5.2.1. Instruction Window

Figure 3 shows the AVF of the instruction window. We
further decompose ACE bits stored in the instruction window
based on their instruction types. As can be seen, the dominant
portion of ACE bits in the instruction window comes from
ACE instructions. For prefetch and NOP instructions, only
instruction opcodes are ACE bits [22]. In this work, we count
all the opcode and destination register specifier bits of FDD
and TDD instructions as ACE bits; all other instruction bits
are un-ACE bits [22].

Figure 3 shows that the instruction window’s AVF ranges
from 26% (gzip) to 62% (gap) in SPEC 2000 and from 44%
(dnapenny) to 84% (clustalw) in BioInfoMark respectively.
On average, the AVF of the instruction window is 42% and
52% in SPEC 2000 and BioInfoMark. Biological multiple
sequence alignment benchmark clustalw has the highest AVF.
This is because clustalw has the highest ACE instruction
fraction (e.g. 90% as shown in Figure 2). Instruction residency
time in the instruction window also affects the AVF result, so
the benchmark promlk yields a higher AVF than hmmer even
though its ACE instruction fraction is lower than hmmer (58%
vs. 85% respectively).

Figure 3. AVF of Instruction Window

SPEC 2000
INT

Instructions
Fast Forwarded BioInfoMark

Instruction
Fast

Forwarded
bzip2-s 64 M clustalw-u 20,400 M
gcc-1 30 M dnapenny-r 140 M
crafty 123 M glimmer-b 20 M
eon-r 216 M hmmer-S 27,200 M
gap 88 M predator-e 25,900 M
gzip-g 1 M promlk-1 320 M
mcf 143 M
parser-d 1,771 M
perlbmlk-s 1 M
twolf 312 M
vortex-3 47 M
vpr-r 3 M

Figure 4 shows the AVF of the instruction window, the
wake-up table and the aggregated results (i.e. considering the
instruction window and the wake-up table as a single
structure). We can see the AVF of the wake-up table is much
lower than that of the instruction window. This is because an
instruction’s ACE time in the wake-up table is always shorter
than the instruction’s residency time in the instruction window.
An instruction may still need to wait for a function unit by
staying in the instruction window after all of its source
operands are ready. As shown in Figure 4, the aggregated
results do not reduce significantly (4%-10% in SPEC 2000
and 6%-9% in BioInfoMark). This is because the number of
bits contained in the wake-up table is less than that in the
instruction window.

Figure 4. AVF of Instruction Window and Wake-up Table

5.2.2. Reorder Buffer

Figure 5 shows the AVF of the reorder buffer. Interestingly,
the ROB’s AVF is significantly lower than that of the
instruction window. This is due to the following effect. The
Alpha-21264 processor has separate integer and floating point
instruction windows. The integer instruction window has 20
entries. The ROB is used to hold all types of instructions and
the size of the ROB is 80 entries. Because of the lack of
floating point operations, the fraction of idle bits in the ROB is
much higher than that in the instruction window.

Figure 5. AVF of ROB

5.2.3. Register Files
Sim-SODA models both the high and low 32 bit of the

physical registers. In this paper, we report the average AVF of
the entire 64-bit registers. As shown in Figure 6, hybrid AVF
computation can reduce register files’ AVF on many
workloads (e.g. 9% on crafty, 10% on promlk and 13% on
predator). On average, hybrid AVF calculation reduces
register files’ AVF by 4% and 5% on SPEC 2000 and
BioInfoMark respectively.

Figure 6. AVF of Register Files

5.2.4. Function Unit

We assume each function unit has about 50% control
latches and 50% datapath latches, and the datapath within it
has a width of 64 bits. The AVF numbers shown in Figure 7
are the average statistics of all four function units. We apply
trivial instruction analysis to each function unit to further
attribute un-ACE bits to different instructions. The semantics
of trivial instructions implies that at least one input value to
the function unit can be un-ACE. There are other instructions
that only produce 32-bit outputs. In that case, the upper 32-bits
in the output data path become idle. As is shown, function unit
AVF bits are mainly caused by the operands of ACE
instructions as well as the output of those instructions.
Because the majority of instructions have two input operands
and one output operand, the input bits contribute more ACE
bits in the function units than the output bits do.

Figure 7. AVF of Function Unit

5.2.5. Data Cache, TLB, Victim Buffer Load and Store
Queues

The level 1 data cache, data TLB, victim buffer and
load/store queues are address-based structures. We applied
lifetime analysis to both tag and data arrays of these structures
and classified lifetime into ACE, un-ACE and unknown
components. The Sim-SODA framework uses bit level analysis
for tag array and byte level analysis for data array. We
implemented the COOLDOWN mechanism to reduce the
unknown fraction since edge effect can be significant in these
structures [4]. To avoid false positive and false negative
matches in the tag array, we have also implemented the
hamming-distance-one analysis method [4] in Sim-SODA.

Figure 8 and 9 show the data array and the tag array AVF
for L1 data cache (DL1), data TLB (DTLB), victim buffer
(VBuf), load queue (LQ) and store queue (SQ). As can be seen,
the L1 data cache tag array’s AVF is higher than the data
array’s AVF. This is because the L1 data cache in the Alpha

21264 [17, 18] is a write-back cache and the cache tag must be
correct at eviction time. Therefore, all bits of the tag are ACE
from the time that there is any write activity that occurs in that
entry until it is evicted. The same scenario happens in load and
store queues. In contrast, the victim buffer tag array’s AVF is
lower than the data array’s AVF. This is because it is a write-
through cache and the ACE time in the tag array is much
lower.

0
10
20
30
40
50
60
70
80
90

100

A
VF

%

Unknown
AVF

 bzip2 gcc crafty eon gap gzip mcf parser perl twolf vortex vpr clustalw dnapny glimer hmmer predator promlk

DL1
DTLB

VBuf
LQ

SQ

Data

SPEC 2000 INT BioInfoMark
Figure 8. Data Array AVF of L1 Data Cache (DL1), Data
TLB (DTLB), Victim Buffer (VBuf), Load Queue (LQ)
and Store Queue (SQ)

0
10
20
30
40
50
60
70
80
90

100

A
VF

%

Unknown
AVF

 bzip2 gcc crafty eon gap gzip mcf parser perl twolf vortex vpr clustalw dnapny glimer hmmer predator promlk

DL1
DTLB

VBuf

LQ
SQ

Tag

SPEC 2000 INT BioInfoMark
Figure 9. Tag Array AVF of L1 Data Cache (DL1), Data
TLB (DTLB), Victim Buffer (VBuf), Load Queue (LQ)
and Store Queue (SQ)
5.3. Program Dynamic AVF Behavior

We have performed simulations using Sim-SODA to
correlate AVF with processor performance statistics such as
instructions completed per cycle. We collected the average
AVF and performance statistical data for fixed chunks of
10,000 instructions. The sampled vulnerability and
performance statistics on benchmarks gcc and gap are shown
in Figure 10.

Figure 10 shows that similar to performance metric IPC,
microarchitecture AVF also demonstrates phase behavior. For
example, the AVF of instruction window correlates well with
IPC on benchmark gcc whereas on benchmark gap, low IPC
phase exhibits high AVF. These statistics were then correlated
with each other after the simulation completed. An example of
the correlation data for each of the studied benchmarks is
shown in Table 5. The columns of this table show correlation
coefficients between processor IPC and the AVF of the
instruction window, ROB, FU and the wakeup table. Table 5
shows that the wake-up table’s AVF correlates very strongly
with performance. This is because the lifetime of ACE bits in
the wake-up table strongly depends on the number of cycles
that the processor completes instructions. In general, we found
that the correlation coefficients vary significantly across

different benchmarks. This implies that architectural
independent characteristics such as fraction of NOPs and
dynamically dead instructions in a code segment affect
program run-time AVF behavior.

Interestingly, we found that microarchitecture AVF does
not always positively correlate with IPC. Intuitively, high IPC
reduces the ACE bits residency time in microarchitecture
structures. On the other hand, the high ILP in a program can
cause the microprocessor to aggressively bring more
instructions into the pipeline, increasing the total number of
ACE bits. The positive and negative correlation coefficient
values imply that AVF is also related with program inherent
behavior. The above observations indicate that accurate AVF
modeling should consider aspects of both hardware and
software. For example, program characteristics of a given
code segment (e.g. instruction mix, logical masking
instructions) can be combined with hardware performance
counters (e.g. pipeline stalls, IPC) to produce accurate AVF
estimates for software at run time.

Table 5. Correlation between IPC and AVF
AVF Correlation

Coefficient Instruction
Window ROB FU Wake-up

Table
bzip2-s 0.14 0.18 0.15 -0.13
gcc-1 0.59 0.44 0.27 0.48
crafty 0.11 0.08 0.12 0.64
eon -0.07 -0.16 0.14 -0.40
gap -0.77 -0.94 0.94 -0.18
gzip-g 0.53 -0.16 0.72 0.87
mcf 0.69 0.59 0.65 0.99
parser-d 0.22 -0.06 0.45 -0.33
perlbmlk-s -0.13 -0.32 -0.32 -0.27
twolf -0.06 -0.03 -0.09 0.73
vortex-3 0.14 -0.02 -0.01 -0.31
vpr-route 0.15 -0.21 0.05 0.63
clustalw-u 0.09 0.76 -0.18 0.78
dnapenny-r 0.12 -0.01 -0.05 0.74
glimmer-b 0.23 -0.04 0.29 0.27
hmmer-S 0.37 0.24 0.01 0.67
predator-e -0.01 0.07 -0.03 0.99
promlk-1 0.01 -0.28 -0.46 -0.53

6. Conclusions
Semiconductor transient faults have become an increasing

challenge for reliable software execution. To explore cost-
effective fault tolerant mechanisms for dependable execution
of the next generation of software, researchers clearly need to
analyze program vulnerability to soft errors at a high level and
at an early design stage. We have developed Sim-SODA, a
unified framework to estimate software vulnerability to transit
faults at the architectural level. The foundations for our
vulnerability modeling infrastructure are parameterized AVF
models of microarchitecture structures present in modern
high-performance microprocessors. Compared with previously
proposed tools, Sim-SODA provides fine-grained AVF models
and covers more hardware structures. Using the Sim-SODA
framework, we profile AVF characteristics of the majority of
hardware structures in an Alpha-21264-like microprocessor
[17, 18]. Currently, Sim-SODA does not model the

vulnerability of the floating point pipeline. Additionally, Sim-
SODA does not model the AVF contribution of combinational
logic due to their negligible impact reported in other studies
[22]. Extensions to the simulator infrastructure and the

creation of additional modules are topics of future research.
We feel reliability estimation infrastructure such as Sim-SODA
will be useful to research on architecture and compiler
approaches to optimize software dependability.

0

0.5

1

1.5

2

2.5

IP
C

 0

0.5

1

1.5

2

2.5

IP
C

0

20

40

60

80

100

In
st

ru
ct

io
n

W
in

do
w

 A
VF

0

20

40

60

80

100

In
st

ru
ct

io
n

W
in

do
w

 A
V

F

0

20

40

60

80

100

R
O

B
 A

VF

0

20

40

60

80

100

R
O

B
 A

VF

0

20

40

60

80

100

Fu
nc

tio
n

U
ni

t A
VF

 0

20

40

60

80

100

Fu
nc

tio
n

U
ni

t A
VF

0

20

40

60

80

100

W
ak

e-
up

 T
ab

le
 A

VF

 0

20

40

60

80

100

W
ak

e-
up

 ta
bl

e
A

VF

Figure 10. Microarchitecture AVF Dynamics on Benchmarks gcc (left) and gap (right)

Acknowledgment
 This work is supported by the NASA award no. NCC 2-
1363 and by the Microsoft Research Trustworthy Computing
award no. 14707.
References
[1] G. Asadi, V. Sridharan, M. B. Tahoori, and D. Kaeli,
Balancing Performance and Reliability in the Memory
Hierarchy, In Proceedings of the International Symposium on
Performance Analysis of Systems and Software, 2005.

[2] R. C. Baumann, Soft Errors in Commercial Semiconductor
Technology: Overview and Scaling Trends, In IEEE 2002
Reliability Physics Tutorial Notes, Reliability Fundamentals,
2002.

[3] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt,
Network-Oriented Full-System Simulation using M5, In
Proceedings of the Workshop on Computer Architecture
Evaluation using Commercial Workloads, 2003.

[4] A. Biswas, R. Cheveresan, J. Emer, S. S. Mukherjee, P. B.
Racunas, and R. Rangan, Computing Architectural

Vulnerability Factors for Address-Based Structures, In
Proceedings of the International Symposium on Computer
Architecture, 2005.

[5] J. Blome, S. Mahlke, D. Bradley, K. Flautner, A
Microarchitectural Analysis of Soft Error Propagation in a
Production-Level Embedded Microprocessor, In Proceedings
of Workshop on Architectural Reliability, 2005.

[6] D. Burger and T. M. Austin, The SimpleScalar Tool Set,
Version 2.0, University of Wisconsin-Madison, Computer
Science Dept., Technical Report No. 1342, June 1997.

[7] T. Calin, M. Nicolaidis, and R. Velazco, Upset Hardened
Memory Design for Submicron CMOS Technology, IEEE
Transactions on Nuclear Science, Vol. 43, No. 6, Dec. 1996.

[8] Compaq Computer Corporation, Alpha 21264
Microprocessor Hardware Reference Manual, July 1999.

[9] Compaq Computer Corporation, Compiler Writer’s Guide
for the Alpha 21264, 1999.

[10] K. Constantinides, S. Plaza, J. Blome, B. Zhang, V.
Bertacco, S. Mahlke, T. Austin, and M. Orshansky, Assessing
SEU Vulnerability via Circuit-Level Timing Analysis, In
Proceedings of the Workshop on Architectural Reliability,
2005.

[11] R. Desikan, D. Burger, S. W. Keckler, and T. Austin,
Sim-alpha: A Validated, Execution-Driven Alpha 21264
Simulator, Technical Report, TR-01-23, Dept. of Computer
Sciences, University of Texas at Austin, 2001.

[12] R. Desikan, D. Burger, and S. W. Keckler, Measuring
Experimental Error in Microprocessor Simulation, In
Proceedings of the Annual International Symposium on
Computer Architecture, 2001.

[13] J. Emer, P. Ahuja, N. Binkert, E. Borch, R. Espasa, T.
Juan, A. Klauser, C.-K. Luk, S. Manne, S. S. Mukherjee, H.
Patil, and S. Wallace, Asim: A Performance Model
Framework, IEEE Computer, 35(2):68-76, Feb. 2002.

[14] B. Fahs, S. Bose, M. Crum, B. Slechta, F. Spadini, T.
Tung, S. J. Patel, and S. S. Lumetta, Performance
Characterization of a Hardware Mechanism for Dynamic
Optimization, In Proceedings of the International Symposium
on Microarchitecture, 2001.

[15] T. Karnik et al., Characterization of Soft Errors Caused
by Single Event Upsets in CMOS Processes. IEEE Trans.
Dependable and Secure Computing, 1(2):128–143, June 2004.

[16] R. E. Kessler, E. J. McLellan, and D. A. Webb, The
Alpha 21264 Microprocessor Architecture, In Proceedings of
the International Conference on Computer Design, 1998.

[17] R. E. Kessler, The Alpha 21264 Microprocessor, IEEE
Micro, Vol. 19, No. 2, page 24-36, March/April, 1999.

[18] D. Leibholz and R. Razdan, The Alpha 21264: A 500
MHz Out-of-Order Execution Microprocessor, Proc. Compcon,
pp.28-36, 1997.

[19] X. D. Li, S. V. Adve, P. Bose, and J. A. Rivers, SoftArch:
An Architecture Level Tool for Modeling and Analyzing Soft
Errors, In Proceedings of the International Conference on
Dependable Systems and Networks, 2005.
[20] Y. Li, T. Li, T. Kahveci, J. A. B. Fortes, Workload
Characterization of Bioinformatics Applications, In
Proceedings of the International Symposium on Modeling,
Analysis, and Simulation of Computer and
Telecommunication Systems, 2005.

[21] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim,
Robust System Design with Built-In Soft-Error Resilience,
Computer, Vol. 38, No. 2, page 43-52, Feb. 2005.

[22] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt,
and T. Austin, A Systematic Methodology to Compute the
Architectural Vulnerability Factors for a High-Performance
Microprocessor, In Proceedings of the International
Symposium on Microarchitecture, 2003.

[23] H. T. Nguyen and Y. Yagil, A Systematic Approach to
SER Estimation and Solutions, In Proceedings of the 41st
IEEE International Reliability Physics Symposium, 2003.

[24] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.
I. August, SWIFT: Software Implemented Fault Tolerance, In
Proceedings of the International Symposium on Code
Generation and Optimization, 2005.

[25] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I.
August, and S. S. Mukherjee, Design and Evaluation of
Hybrid Fault-Detection Systems, In Proceedings of the
International Symposium on Computer Architecture, 2005.

[26] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
Automatically Characterizing Large Scale Program Behavior,
In Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2002.

[27] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel,
Characterizing the Effects of Transient Faults on a High-
Performance Processor Pipeline, In Proceedings of the
International Conference on Dependable Systems and
Networks, 2004.

[28] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt,
Techniques to Reduce the Soft Error Rate of a High-
Performance Microprocessor, In Proceedings of the
International Symposium on Computer Architecture, 2004.

[29] J. J. Yi and D. J. Lilja, Improving Processor Performance
by Simplifying and Bypassing Trivial Computations, In
Proceedings of the IEEE International Conference on
Computer Design, 2002.

[30] S. K. Reinhardt and S. S. Mukherjee, Transient Fault
Detection via Simultaneous Multithreading, In Proceedings of
the International Symposium on Computer Architecture, 2000.

